
International Journal of Mass Spectrometry 225 (2003) 191–212

Review

Development of classical trajectory methodology for the
study of dissociation dynamics of polyatomic ions

Myung Soo Kim∗, Jeong Hee Moon

School of Chemistry, National Creative Research Initiative Center for Control of Reaction Dynamics,
Seoul National University, Seoul 151-742, South Korea

Received 30 September 2002; accepted 2 January 2003

Abstract

Classical trajectory method developed to study ion dissociation dynamics is reviewed with emphasis placed on the methods
tested, adopted, or developed in this laboratory. A systematic method to construct a potential energy surface from ab initio data
is explained in some details. Generally adopted methods for trajectory calculation are described. A newly devised method for
reliable calculations of product mode-specific energies from the trajectory results is explained. A scaling theorem for classical
dynamics found in this laboratory is presented together with its application to correct for the errors arising from inaccurate ab
initio data. Finally, the influence of numerically induced chaos on trajectory is described together with the method to check
its appearance as a caution to the misuse of the trajectory method in the long time dynamics.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Understanding dissociation dynamics of an inter-
nally excited polyatomic cation is one of the central
subjects in mass spectrometry. This provides a theo-
retical basis to the mechanistic interpretation of mass
spectra and helps to extract structural information
from various spectral data. The knowledge is also
important to assess the characteristics and capabil-
ity of ionization and dissociation methods and pro-
vides useful guidelines to improve them. Molecular
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dissociation is also an important subject in the field of
chemical reaction dynamics[1–4]. Emphasis in this
field is placed mostly on the neutral rather than ion
reactions even though the general theoretical frame-
work to handle the dissociation dynamics is hardly
affected by the charge state. Ease of experiment and
availability of abundant experimental data may be the
main reasons for the bias toward the neutral chemistry.

In the standard theory of mass spectra, or quasi-
equilibrium theory (QET), electronic energy acquired
by an ion at the time of its formation is assumed to be
converted rapidly to vibrational energy in the ground
electronic state via radiationless processes such as
internal conversion. Rapid intramolecular redistribu-
tion of the vibrational energy is also assumed. Then,
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the dissociation rate constant is evaluated using the
microcanonical transition state theory, or the Rice–
Ramsperger–Kassel–Marcus (RRKM) theory[5–10].
Checking the validity of the first assumption, which
may be called the assumption of electronic ergod-
icity, is an active research subject in itself[11,12].
Dissociation in a repulsive electronic state or via
curve crossing to a repulsive state is the most com-
mon exception to this assumption[13–23]. Study of
nonadiabatic transition, for example near the conical
intersection, which is a topic of intensive research
interest [24–28], has relevance for the test of this
assumption. Our recent discovery of very long-lived
excited electronic states of several molecular cations
suggests that the assumption may not be as generally
applicable as was thought previously[11,12,29]. In
this review, we will not go into details of this topic
but accept the validity of the assumption. Or, we will
just focus on the dissociation dynamics of molecular
ions prepared in the ground electronic state.

The investigation of ion dissociation dynamics can
be divided into two sub-fields. One concerns the rate
constant and may be called the entrance channel dy-
namics. The other concerns the energy partitioning
in the products, or the exit channel dynamics. Even
though state-selective measurement[30–34] of these
properties would be extremely useful for a compari-
son with theoretical results, hardly any such data are
available except for the dissociation of simple diatomic
ions. Instead, most of the experimental data reported
so far were obtained for energy-selected dissociation.

Photoelectron–photoion coincidence (PEPICO)
spectrometry has been the most fruitful technique to
measure energy-selected dissociation rate constant
[13–18,35,36], and the rate constant of a dissocia-
tion occurring on a microsecond time scale can be
measured with this technique. The photodissociation
kinetics scheme developed in this laboratory allows
the measurement of rate constants on a nanosecond
time scale[37–42]. In this technique, energy selection
is achieved by generating a molecular ion by charge
exchange and exciting it with a monochromatic laser.
The same technique has been used to measure the ki-
netic energy release (KER) or its distribution (KERD)

[43]. It is to be mentioned, however, that the ma-
jority of the experimental KERD data reported was
measured for metastable ion decomposition[44] us-
ing mass-analyzed ion kinetic energy spectrometry
(MIKES) [45,46]. Even though energy selection is
not done for the parent ion in this technique, reason-
able estimation of its internal energy is possible once
the rate–energy data are known.

For a theoretical understanding of a chemical reac-
tion, the time-dependent change of the system must
be calculated, which usually requires a tremendous
amount of computation. Such a difficulty is avoided in
the transition state theory by postulating a statistical
hypothesis of quasi-equilibrium between transition
state species and reactants. In the usual RRKM–QET
[5,6,47–49]calculation of a rate constant, the reac-
tion critical energy and vibrational frequencies of
reactants and transition species are needed. However,
these parameters are not well known in most of the
cases. In practice, experimental rate–energy data are
fit with RRKM–QET calculation by adjusting above
parameters. The reaction critical energy,E0, is eval-
uated from the best fit together with the activation
entropy,�S‡, which is related to the looseness of the
transition state[50,51]. When the transition state is
completely loose, or is well-approximated by the or-
biting transition state, transition state parameters can
be replaced by those of the products alleviating the
above ambiguity. However, there are not many reac-
tions which are nearly completely loose such that the
orbiting transition states become true bottlenecks. In
spite of various deficiencies of the statistical approach,
it is the only method which can supply the theoretical
rate constant of a reaction occurring on a nanosecond
or longer time scale. However, rigorous dynamical
approaches are needed to study faster reactions for
which the statistical hypothesis may not be valid.

Product energy partitioning, especially the KERD
which can be easily measured for ion dissociation, can
be calculated with the statistical theories also. In par-
ticular, excellent agreement between the experimental
and theoretical KERDs is achieved when the reverse
critical energy of dissociation is negligible[39,52–54].
RRKM–QET formulated from the perspective of
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reverse reaction, which is commonly called the phase
space theory[3,52,53,55–57], is widely accepted in
such a case. Agreement is not as good when the re-
verse barrier is not negligible and energy exchange
occurs among various degrees of freedom during the
exit channel motion. Even though attempts have been
made to improve the theoretical prediction by adding
various assumptions concerning exit channel coupling
[58,59], no statistical approach with a general appli-
cability has emerged yet. Namely, one must resort to
rigorous dynamics calculations to account for the ex-
perimental energy partitioning data and to understand
the exit channel dynamics of a dissociation reaction.

It is appropriate to solve the Schrödinger equation to
investigate the dynamics of a molecular system. Sig-
nificant progress has been made during the past decade
to handle this formidable task such as calculations of
wave packet propagation by solving time-dependent
Schrödinger equation[60–62] or of scattering
S-matrix by solving the time-independent Schrödinger
equation[63–67]. Regardless, the computational de-
mand is still tremendous and an application of the
quantum dynamics is limited to five-atom systems at
the moment[68,69]. Hence, classical dynamics has
been widely used to obtain detailed information on
the dissociation processes even though the method
is inherently inadequate to account for the quantum
phenomena such as tunneling and zero-point effects.

In classical dynamics[1,70], a trajectory, or time
evolution of a system in the phase space, is calculated
by solving classical equations of motion which are
usually in the form of Hamilton’s equations. Results
from trajectory calculations starting from hundreds,
if not thousands of initial phase space points are av-
eraged for a reliable representation of a real situation.
Solving the classical equations of motion requires
knowledge of the force acting on the atoms in the sys-
tem along a trajectory. In the conventional approach
[71–76], the potential energy surface (PES) covering
the reactant, transition state, and product regions,
which is called the global PES, is constructed prior
to trajectory calculations. Then, as many trajectories
as needed or practically feasible are calculated using
this surface. An alternative is to obtain the force, or

the gradient of the potential energy, on points along
a trajectory by ab initio calculation. For example, the
dynamic reaction path routine incorporated in ab ini-
tio packages[77,78] provides such a capability. The
fact that the costly gradient calculation must be done
at many points on each trajectory is the major disad-
vantage of this approach especially when calculation
of many trajectories are desired. Some attempts have
been made to reduce the computational demand by
introducing trust region[79] or local fifth order fitting
[80]. The computational demand of the method is still
tremendous, however, compared to the conventional
one. Recent Gaussian 98 package has incorporated
one of the direct dynamics method mentioned above.
A review of the trust region dynamics and its applica-
tion to ion dissociation reactions have been presented
recently by Uggerud[81]. A related approach is the
Car–Parrinello method which computes energies and
densities of valence electrons ‘on the fly’ by elec-
tronic density functional theory[82]. This method
has become popular in molecular dynamics and can
handle high dimensionality[83–85].

In the present review, the classical trajectory method
based on the conventional approach and its application
to ion dissociation dynamics will be presented, with
an emphasis placed mostly on methodology rather
than on its application. Also, since general reviews
on the classical trajectory method itself are available
in the literature[1,70], the present review will focus
on the methodology used in this laboratory which has
been developed with quantitative interpretation of ex-
perimental data obtained from mass spectrometers in
mind. These include the method to construct reliable
global PESs using the results from ab initio calcula-
tions and the method to evaluate mode-specific ener-
gies of polyatomic products from the trajectory results.
It is known that potential energy surface obtained by
ab initio calculation and dynamics results calculated
thereupon are not accurate enough for comparison
with the experimental data. A method developed to
judge and to account for such a deficiency will also
be presented. Prolonged (about 10 ps or longer) cal-
culation introduces numerically induced chaos which
makes the trajectory unreliable. A convenient method
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to check the advent of the numerical chaos is also
presented. Numerically induced disruption of a trajec-
tory means that the whole methodology is adequate
for short time dynamics only. Hence, emphasis is
placed more on the exit channel dynamics which is
completed within tens of femtosecond rather than on
the rate constant.

2. Construction of potential energy surface
(PES)

In the conventional classical trajectory study of ion
dissociation dynamics, it is essential to have a reli-
able global PES covering the reactant, transition state,
and product regions. Trajectory results are virtually
determined by PES used in the calculation. Hence,
construction of accurate PES has been a subject of
intense research interest.

A PES is constructed utilizing molecular informa-
tion obtained from experiments and quantum chem-
ical calculations. There are basically two different
approaches to construct a PES. One is to put the global
PES as a sum of many parameterized analytic func-
tions, each of which being a potential for a particular
motion such as a bond stretch[71–76,86,87]. Provi-
sions are made such that a smooth carryover from the
reactant, via transition state, to product geometries
can be achieved. Parameters are fixed to fit the avail-
able molecular data. The large number of parameters
involved makes this a formidable task. For example,
several tens of parameters are needed to construct the
PES of five- to six-atom system. Moreover, the use of
pre-determined forms of potential energy functions is
a needless restriction, or bias, on the shape of PES.

The second approach is to construct a PES by inter-
polation of molecular data such as energy and its first
(gradient) and second (hessian) derivatives obtained
by quantum chemical calculations at many configu-
ration points. The Shepard interpolation method of
Ischtwan and Collins[88] and the reproducing kernel
Hilbert space (RKHS) method by Rabitz and cowork-
ers[89] are the two interpolation schemes under active
research. RKHS is a Hilbert space of continuous

real-valued functions which possesses many useful
properties for data interpolation. Several successful
constructions of triatomic PES have been reported
[90–94]. The Shepard interpolation scheme has been
more widely applied so far. It is the main PES con-
struction scheme incorporated in the ion dissociation
dynamics package developed in this laboratory. Its
essential features will be described with emphasis on
those used in this laboratory.

The Shepard interpolation scheme originally pro-
posed by Ischtwan and Collins is undergoing improve-
ments by many research groups and various versions
are available now[95–103]. In this scheme, a global
PES is constructed by taking a weighted sum of local
harmonic potentials at many configurations obtained
by quantum chemical calculations. Namely, the po-
tential energyV(R) at configurationR is given by

V(R) =
∑
k

wk(R)V k(R). (1)

Herewk(R) is the weighting function andVk(R) is
the local harmonic potential in the vicinity of config-
urationRk.

Vk(R) = V(Rk) + ∆k · g∆ + 1
2∆

k · H∆ · ∆k. (2)

Hereg∆ andH∆ are the gradient and hessian in the
coordinate system∆ which are converted from the
corresponding Cartesian values evaluated in the usual
quantum chemical packages. It is obvious that the
method is capable of providing a faithful represen-
tation of the true PES at the quantum chemical level
adopted when sufficient number of local potentials
are included. The research focus here is to devise an
efficient method to obtain a good representation using
as small number of local potentials as possible. Some
of the important aspects are as follows:

2.1. Selection of configuration points

To limit the number of local potentials used, it
is necessary to identify the important points in the
configuration space. For the PES used in dissociation
dynamics study, the equilibrium geometries at the
reactant and products and the geometry of transition
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state will be such points. In addition, some points
(∼40) are chosen along the minimum energy path, or
the intrinsic reaction coordinate (IRC)[104,105]. A
PES constructed by interpolation of local potentials
at these points is called IRC-only PES.

The IRC-only PES is upgraded by adding local
potentials at off-IRC points. In the upgrading scheme
devised by Ischtwan and Collins, points in the con-
figuration space which are frequently encountered in
actual trajectories are selected. A number of trajec-
tories are run on the existing PES and some, say 10,
configuration points on each trajectory are sampled
periodically, producing a total ofNt trajectory points
denoted byS. Then, the importance factor for each
point is calculated by comparing with the positions
(Ns in Eq. (3) denotes its number) already included
in the existing PES, or database.

h(Sk) = 1

Nt − 1

∑Nt

n�=k,n=1 v
n(Sk)∑Ns

i=1 w
i(Sk)

, (3)

with

vn(Sk) = 1

|T (Sn) − T (Sk)|2p ,

wi(Sk) = 1

|T (Ri) − T (Sk)|2p . (4)

Here 2p is a parameter which must be equal to 2 or
larger in this case to achieve convergence of the PES.
It is usual to take 2p comparable to 3N − 6. T is a
tensor which transforms a coordinate vector into an
interatomic distance vector or its inverse. The factor is
large when other newly acquired trajectory points are
clustered around this point and when this point is dis-
tant from the positions already included in the existing
database. The point with the largest importance factor
is chosen. The local potential at this point is calcu-
lated and added to the database. Other methods have
been devised to select a point fromNt , such as the
calculation of the variance of energy or gradient[98].
However, the quality of the global PES constructed
does not seem to be very sensitive to the selection
method. In the original scheme, the PES was updated
until the dynamics data, such as the average kinetic
energy release, obtained by trajectory calculations

converged. In the method proposed by Thompson and
Martinez[106] and adopted in this laboratory, energy
at the selected point is obtained by ab initio calcu-
lation and also by using the current database. When
the difference is larger than a preset value (typically
0.2 kcal mol−1), the local potential at the new point is
calculated and added to the database. The process is
repeated until appropriate points can not be found any
more and update fails. As a final test, energy contour
diagrams are often calculated using the updated PES
and compared with those obtained by ab initio scan.

2.2. Coordinate system

Since a Cartesian system shows coordinate redun-
dancy, internal coordinate systems are more appropri-
ate to express the PES. Even though interatomic dis-
tances were the initial choice[88], z-matrix type inter-
nal coordinates[99,102]consisting of bond length (r),
bond angle (θ), and dihedral angle (φ) have become
popular. Further improvement has been observed when
the inverse bond length (z = 1/r) is used rather than the
bond length. Also, excellent results[107]have been re-
ported using an exponential form of bond length e−βr.

Even though the construction of a global PES using
one set of coordinates is desirable, it is often difficult
to find a set which provides excellent representation
both in the reactant and in the product regions. Then,
two different sets may have to be used, one for the
entrance region and the other for the exit region.

2.3. Weighting function

A local potential calculated at a configuration point
included in the database is a good expression for the
potential in its very vicinity. One important role of
weighting function is to assure smooth carryover in
a region between two database points. An excessive
damping by weighting function blurs PES and makes
it inaccurate even at the very vicinity of a database
point. Since the quality of a global PES constructed is
rather sensitive to the weighting function used, it has
been the focus of active research[98,102,108,109].
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A weighting function is made to have the following
general property after normalization:

w →
{

0 as|R − Rk| → ∞,

1 as|R − Rk| → 0.

In the Shepard interpolation[88,110,111], the weight
of thekth local potential at the positionR is given by

wk(R) = 1

|T (R) − T (Rk)|2p . (5)

T is the coordinate transformation mentioned pre-
viously. Transformation to the interatomic distance
vector or to its inverse is widely used, the latter being
the choice in many cases. Ishida and Schatz[103]
proposed to add a parameterα2 in the denominator
to remove singularity and also to have a smoothing
effect at the middle of two database points. This is
widely accepted now.

wk(R) =
(

1

α2 + |T (R) − T (Rk)|2
)p

. (6)

The interatomic distances and their variants do not
form a rectilinear set of coordinates. One of the results
is that the same distance in Cartesian appears as dif-
ferent in the interatomic distance coordinate system.

Fig. 1. Contour maps near the TS of reaction(8) for PESs constructed with (a) Cartesian weighting, (b)R-weighting, and (c) inverse
R-weighting for local potentials calculated at the MP2/6-31G∗∗ level. Correct MP2/6-31G∗∗ contour obtained by ab initio scan is shown
by dashed lines. The interatomic distance between two recoiling H atoms (RH2) and the distance between C and a recoiling H atom (RCH)
were varied while other parameters were fixed at the saddle point geometry. Energies in eV referred to the saddle point are marked. (Taken
from ref. [109] with permission from AIP.)

Such a problem is eliminated by using Cartesian
distance square,δ2, rather than|T (R) − T (Rk)|2 in
Eq. (5). The difficulty here is to find a common Carte-
sian frame in the presence of molecular rotation occur-
ring along the trajectory[108]. A rigorous expression
for δ2 was presented by Rhee[109] as follows:

δ2 =
∑
α

|Cα − (ΩCk
α + τ )|2. (7)

Here Cα and Ck
α are Cartesian positions of theαth

atom corresponding toR andRk, respectively.Ω is
the orthogonal rotation matrix andτ is the translation
vector. Newton’s method of optimization is used to
find Ω. The iterative nature of this scheme requires
several times longer computing time than the previous
weighting schemes.

2.4. Examples

Dissociation of CH2OH+ occurring via

CH2OH+ → CHO+ + H2 (8)

is a prototype ion dissociation reaction which has been
investigated by several research groups over the years
[71,112–119]. Fig. 1 shows a contour diagram near
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the transition state calculated with PES constructed by
interpolation as described above[109]. Ab initio cal-
culations to obtain energy, gradient, and hessian were
performed at the MP2 level using the 6-31G∗∗ basis
set. The interpolation started with 40 local potentials
at points on IRC and 300 potentials at off-IRC points
were added by the systematic update procedure. Also
shown is the PES contour at this level obtained by
ab initio scan. It is seen that the PES constructed by
interpolation is a good representation of the ab initio
PES especially when the Cartesian weighting scheme
is used.

An even more quantitative fit with the true ab initio
PES is possible by adding more local potentials or by
using a more elaborate scheme. For example,Fig. 2
compares the contour diagrams for the reaction

Cl + H2 → HCl + H (9)

obtained by interpolation and by ab initio scan. Ab
initio calculation was done at the QCISD level with
the 6-31G∗∗ basis set. Two hundred local potentials

Fig. 2. The energy contour maps for the reaction(9) obtained by
ab initio scan at the QCISD/6-31G∗∗ level (solid line) and by the
ab initio-interpolated PES (N = 200, dashed line) using expo-
nential interatomic distances as the internal coordinates. Cl–H–H
bending angle was fixed at 150 degree. The spacing between the
contour lines is 3.0 kcal mol−1 and the outermost line represents
30.0 kcal mol−1 with respect to the reactant energy minimum.
(Taken from ref.[107] with permission from AIP.)

were used in the interpolation. Excellent agreement
between the interpolated PES and the true ab initio
PES was possible by using exponential interatomic
distances (e−β1r1, e−β2r2, and e−β3r3) as the internal
coordinates[107].

3. Calculation of a trajectory

Excellent reviews on the methods to calculate clas-
sical trajectory are available in the literature[1,70].
These articles and references therein are recommended
for the details of the method. The essential aspects
needed for actual calculation will be described here
together with a brief outline of the overall method.

Calculation of a classical trajectory means evalu-
ation of the time evolution from an initial point in
the phase space by numerical integration of classical
equations of motion which are usually in Hamiltonian
forms.

∂H

∂pi

= q̇i and
∂H

∂qi
= −ṗi. (10)

Hereqi andpi are the conjugate coordinate and mo-
mentum and Hamiltonian,H , is the sum of the kinetic
(T ) and potential (V ) energies expressed inqi’s and
pi’s. Expression ofT is straightforward especially
when Cartesian or mass-weighted Cartesian coordi-
nate system is used. The construction of PES,V , for
a system of interest was the subject of the previous
section. Methods to sample a trajectory initial point
and to calculate a trajectory therefrom by numeri-
cal integration of the Hamilton’s equations will be
described here.

3.1. Sampling

The first step in a trajectory calculation is to sam-
ple an initial point, namely position and momentum
of each atom in the molecule, compatible with the
experimental conditions. Sampling is done in the
reactant region for the calculation of rate constant
while sampling at or near the transition state is useful
for the product energy partitioning calculation. Var-
ious schemes have been developed to sample initial
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trajectory points[1,70,120,121]. Among these, or-
thant and normal mode samplings are the most widely
used in reaction dynamics and will be explained here.

3.1.1. Orthant sampling
Orthant sampling was developed by Bunker and

Hase[120,121]for cases where the dimension of the
phase space is large and where the number of sam-
pling is much less than the orthants in the phase space
(orthants are inn-dimensional space what quadrants
and octants are in two and three dimensions). It pro-
duces a microcanonical ensemble and is precise only
for a collection of harmonic oscillators.

The first step in orthant sampling is to determine
numerically the limits of the coordinate and momen-
tum of each atom in the Cartesian coordinate system.
Then, one unit vector with random orientation is se-
lected and projected on the upper or lower limit of the
coordinate vector to obtain the coordinate. The same
is done for the momentum also. The total energyE

is calculated at the phase space point sampled. Then,
coordinates and momenta are scaled untilE is within
0.1% of the preset energyE0. The orthant sampling
tends to provide a distribution of initial points cor-
responding to equipartition of internal energy among
vibrational degrees of freedom. When the total energy
is not far above the zero-point level, points with less
than zero-point energy for some vibrational modes
are frequently sampled. The problem is especially
serious for high frequency vibrations.

3.1.2. Normal mode sampling[120]
Normal mode sampling avoids the above difficulty

in orthant sampling by assigning the zero-point energy
to each mode prior to sampling. The internal energy
above the zero-point level is distributed among vibra-
tional degrees of freedom as desired. For example, this
is put in a particular mode to mimic mode-selective
excitation or is distributed randomly to model a statis-
tical situation. Then, vibrational energy in each mode
is calculated. For each mode, the limits of the coordi-
nate and momentum in the normal coordinate system
are determined. For a mode with a negative eigen-
value (reaction coordinate at the saddle point), only

momentum limits are determined. A random number
R (0 ≤ R ≤ 1) is selected. By multiplyingR to the
upper or lower limit of the coordinate, displacement
in a normal coordinate is obtained. Sampling of the
momentum is similar but uses

√
1 − R2. The total

energyE is calculated and compared with the preset
energyE0. The coordinate is scaled untilE is within
0.1% ofE0.

3.2. Numerical integration

A trajectory starting from an initial point in the
phase space is calculated by numerical integration
of Hamilton’s equations. In the rate constant calcu-
lation, a trajectory is terminated some time after the
system has crossed the transition state and entered
the product region. In the product energy partitioning
calculation, termination is done when the dissocia-
tion is complete (when the center of mass distance
between the fragments is larger than a cutoff value)
or when the system relaxes toward the reactant. The
energy conservation error,|�E|/E, is monitored to
check the integration accuracy. The time step of in-
tegration may have to be reduced to keep this within
the preset value (10−6, for example). Some important
integrators are as follows[122–124].

3.2.1. The fourth order Runge–Kutta integrator
(RK4)

The Runge–Kutta method is a single-step method
which uses the position and momentum att = t0 to
find those att = t0 + h. Even though the Taylor ex-
pansion up to the fourth order is taken into account in
RK4, costly calculation of the second and higher order
terms are avoided by including data at three estimated
points betweent0 and t0 + h. RK4 is self-starting,
stable, and accurate. The main disadvantage is that it
does not provide an estimate of accuracy, which must
be checked indirectly, for example, by calculating the
energy conservation error.

3.2.2. Adams–Moulton integrator (AM)
The Adams–Moulton method is a multi-step method

which uses the position and momentum att = t0 and
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at some previous points to find those att = t0 + h.
AM can be run with variable time step within the
preset integration accuracy. AM is fast and accurate,
more so than RK4, and is the integrator of choice in
this laboratory. Since AM is not self-starting, RK4
is run at several points near the initial point. AM is
often combined with the Adams–Bashforth technique,
which results in predictor–corrector methods.

We also tested Gear’s integrator which belongs
to a family of backward differentiation formulas
and Verlet and velocity-Verlet integrators which are
widely used in the molecular dynamics simulation.
The former is known to be appropriate to handle stiff
problems. The Verlet-type integrators are simple, fast,
and display decent energy conservation even after
long term integration. However, we found[125] that
trajectory equivalence (to be explained in a following
section) decayed very rapidly with these integrators.
Hence, even though RK4 and AM integrators are
known to accumulate errors, these have been found to
be more appropriate for the calculation of trajectories
in the short term.

4. Rate constant and product energy
partitioning

4.1. Rate constant

To calculate a rate constant a number of trajectories,
N0, are run starting from initial points sampled to be
compatible with the system of interest. Calculation of
a trajectory is terminated when reaction has occurred,
for example, as judged from the distance between the
two fragments. The number of unreactive trajectories,
N, remaining after timet is counted. Rate constantk
is determined as the slope of the semilog plot ofN

vs. t [70].

N = N0 e−kt. (11)

4.2. Relative translational energy

The relative translational energy for the unimolec-
ular dissociation reaction A→ B + C is calculated

from a trajectory result as[70]

Et = 1
2µv2

rel. (12)

Herevrel = vB − vC andµ is the reduced mass of the
B–C system.

4.3. Rotational energy

The rotational energy of a diatomic or asymmetrical
polyatomic product can be calculated from a trajectory
result as[70]

Er = 1
2ω · J . (13)

Here ω is the angular velocity andJ is the angular
momentum. The rotational analysis for linear and
symmetric top products is not straightforward due
to the complication arising from vibration–rotation
interaction. Recently, a good approximate treatment
of linear triatomic case was developed[126]. Let us
designate A, B, and C as the three rotational axes,
A being the figure axis in the equilibrium geome-
try. Defining a two-dimensional angular momentum
perpendicular to A as

J 2D = J B + J C = J − J A , (14)

it was found that the two-dimensional angular veloc-
ity, ω2D, was an excellent approximation for the pure
rotational angular velocity.

ω2D = I−1 · J 2D. (15)

The rotational energy under this approximation is
simply given by

Er = 1
2ω2D · I · ω2D. (16)

4.4. Mode-specific vibrational energy

Until recently, accurate calculation of mode-specific
vibrational energy of a polyatomic product from a
trajectory result was a very difficult job. In many
trajectory studies involving polyatomic products,Et

and Er were subtracted from the total energy and
the remainder was presented as the total vibrational
energy. One way to separate this into each normal
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mode is to use Cartesian eigenvector and obtain the
displacement (Ql) and velocity (̇Ql) along each nor-
mal mode (l). Then, kinetic (T ) and potential (V )
parts of the energy of this mode are given by[127,
128]

Tv,l = 1
2Q̇

2
l , Vv,l = 1

2λ
2
l Q

2
l . (17)

Hereλl is the force constant of thelth mode. Calcu-
lation of a mode energy usingEq. (17) results in a
significant error as will be shown later.

The main problem associated with the use of
Cartesian eigenvectors arises from the fact that these
are correct only at the equilibrium geometry and
hence are not adequate for large amplitude motions.
Such a problem can be made less serious by ex-
pressing the normal mode eigenvectors in terms of a
set of internal coordinate vectors which lie more or
less along the vibrational motions even at large dis-
placements[129]. For example, eigenvectors of H2O
expressed inr1, r2, andθ coordinates are more ade-
quate than the usual Cartesian forms. The formalism
to evaluate mode-specific vibrational energy from a
trajectory result using internal eigenvectors is rather
complicated. Therefore, only a brief outline will be
presented.

The Cartesian velocity is divided into two;v is the
velocity free of angular motion andu is that of angular
motion. v is converted to the velocity in an internal
coordinate system,̇s, as follows:

ṡ = B · M−1/2 · v. (18)

HereB is the usualB-matrix in the vibrational prob-
lem andM is the diagonal matrix of atomic masses.ṡ

is further transformed to the mass-free velocity using
theG-matrix (G = BM−1BT).

V s = G−1/2 · ṡ. (19)

Then the kinetic energy of thelth mode is given by

Tv,l = 1
2[(Λl · V s)

2 + (Ll · u)2]. (20)

HereΛl andLl are the eigenvectors of thelth mode
expressed in the internal and Cartesian coordinate
systems, respectively. To evaluate the potential part,

displacement along thelth normal coordinate is cal-
culated from a trajectory result as follows:

Sl = Λl · G
−1/2
0 · (s − s0). (21)

Here s0 is the equilibrium geometry andG0 is the
G-matrix calculated at this geometry. In a scheme
called the elimination method, the potential of thelth
mode is calculated with the displacements of other
modes ignored.

Vv,l = V(s0 + SlG
1/2
0 · Λl) − V(s0). (22)

It is to be mentioned that the mechanical anharmonic-
ity is accounted for in this formula. The remaining
source of error in mode-specific energy assignment
is the mode–mode coupling. A simple way to correct
for this error is to calculate potential energy,Vv,lm,
for simultaneous displacements along thelth andmth
modes and compare withVv,l+Vv,m. Since difference
between these values must arise due to mode–mode
coupling, the difference is divided evenly to thelth
andmth mode.

4.5. Example

Various methods to calculate the mode-specific en-
ergies were tested in ref.[129] with two nonreacting
triatomic systems H2O and HCN and with CHO+

which is the product of reaction(8). The PESs con-
structed by interpolation of local potentials obtained
at the MP2/6-31G∗∗ level were used. Rotational en-
ergies were added in all the cases. More than 1000
trajectories were run for each system. At a trajectory
end point, the rotational energy (Er) and the Corio-
lis energy (ECori) were calculated, which were small
fractions of the total internal energy. Five different
schemes to evaluate the energy of theith vibrational
mode,Ei

v, were tested. The results from three schemes
will be presented here, which are the most represen-
tative. These are (I) use of Cartesian eigenvectors and
harmonic approximation for vibration (Eq. (17)), (II)
use of internal eigenvectors and harmonic approxi-
mation, and (III) use of internal eigenvectors and the
elimination method (Eqs. (20) and (22)). The total
internal energies were calculated by summing all the
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Table 1
Vibrational energies (in eV) of each normal mode evaluated by schemes I–III, and the errors (δ in %, Eq. (23)) in the mode-specific
analysis for nonreacting systems H2O and HCN and for CHO+ generated by reaction(8)a

Scheme I
(Cartesian/harmonic)

Scheme II
(internal/harmonic)

Scheme III
(internal/elimination)

H2O
ν1

b 0.60± 0.75 0.45± 0.30 0.42± 0.26
ν2

b 0.30± 0.28 0.30± 0.28 0.29± 0.27
ν3

b 0.35± 0.34 0.31± 0.28 0.31± 0.28
δ (%) 24.1 ± 75.9 5.9 ± 16.6 3.0 ± 10.0

HCN
ν1 0.28± 0.26 0.28± 0.27 0.27± 0.23
ν2 0.39± 0.21 0.45± 0.25 0.45± 0.26
ν3 0.87± 0.76 0.29± 0.25 0.28± 0.23
δ (%) 52.1 ± 71.0 1.1 ± 10.8 0.0 ± 3.5

CHO+
ν1 0.34± 0.24 0.25± 0.20 0.27± 0.22
ν2 0.36± 0.17 0.39± 0.19 0.41± 0.20
ν3 0.35± 0.35 0.12± 0.13 0.13± 0.13
δ (%) 23.5 ± 33.5 −7.0 ± 4.9 0.0 ± 4.1

Taken from ref.[129] with permission from AIP.
a Correct total vibrational energies are obtained by subtracting translational and rotational energies from the total energy.
b ν1, ν2, andν3 are the symmetric stretching, bending, and asymmetric stretching modes, respectively.

mode-specific energies. These were compared with
the correct values (Ein) to estimate the relative errors
(δ) as follows (Table 1):

δ =
(∑

i E
i
v + Er + ECori

) − Ein

Ein
. (23)

Scheme I was found quite inaccurate with the aver-
age errors of 24, 52, and 24% for H2O, HCN, and
CHO+, respectively. Use of the internal eigenvectors
in scheme II substantially reduced the errors to 6, 1,
and −7%, respectively. Finally, accounting for the
mechanical anharmonicity in scheme III further re-
duced the error to a negligible level, 3, 0, and 0%,
respectively. Scheme III was tested for other systems
including a four-atom product and satisfactory results
were reported[119,130–132].

5. Scaling of trajectory results

As mentioned earlier, trajectory results are essen-
tially determined by the PES used in the calculation.
The method to construct PES by interpolation of local

potentials obtained by quantum chemical calculation
is systematic, unbiased, and attempts to produce a
PES which is a good representation of a quantum
chemical PES. The problem here is that the quantum
chemical PES itself may not be a good representation
of the real PES. One may attempt to alleviate such
a difficulty by adopting a higher quantum chemical
level. Still, some difficulties are encountered. The first
difficulty is that an efficient software to calculate the
hessian, which is needed to obtain a local potential,
is implemented at moderately high ab initio levels
only in commercial quantum chemistry packages.
The second difficulty, which is also a practical one, is
that even though raising the quantum chemical level
is known to improve the accuracy, the improvement
achieved is not quite significant compared to tremen-
dous computing time further needed. The third is that
even with the use of the highest level accessible, there
is no guarantee that PES at this level is a good repre-
sentation of the real one. Hence, a method is needed
to obtain reliable results from trajectory calculations
on PES constructed at a moderately high quantum
chemical level and to assure their reliability. The
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scaling theorem for classical trajectory was found in
this laboratory and used to handle the above issues.

5.1. Scaling relation for dynamical properties

When two PESs are qualitatively similar even
though not quantitatively, trajectory results on these
surfaces are expected to be similar. The scaling rela-
tion between the trajectory results on exactly scalable
PESs was derived, which is called the scaling theorem
[119,132].

Let us consider two PESs related by simple scaling:

Vs(qs) = s2V(q). (24)

Two-phase space points, one on each surface, is called
equivalent when the following conditions are met for
the positions and momenta:

qs = q, ps = s · p. (25)

Eq. (25)assures simple scaling similar toEq. (24)for
the kinetic energy, and hence the total energy also.

Es(qs,ps) = s2E(q,p). (26)

For trajectories initiated from equivalent points, it can
be shown that the equivalence is maintained through-
out the trajectories when phase space points at scaled
times are compared[119].

ts = s−1t. (27)

This scaling theorem leads to important relations be-
tween dynamic properties obtained on PESs related
by simple scaling. The fact that the trajectories initi-
ated from the equivalent phase space points terminate
at equivalent points means that the mode-specific
energies[129] are also scaled by the same factor
s2. For reactive trajectories, it can be shown that the
rotational and translational energies of products are
similarly scaled also[119]. Scaling theorem also leads
to simple relation between rate constants evaluated
on simply scaled PESs. The scaling relation between
rate constants for unimolecular reaction can be easily
derived based on the usual relation.

N = N0 e−kt, Ns = N0 e−kst . (28)

Since the number of unreactive trajectories at the
equivalent time (Eq. (27)) is the same, the following
relation is obtained[132]:

ks = s · k. (29)

The same relation holds for the rate constants of bi-
molecular reactions also[132]. The validity of this
relation was also checked for the RRKM–QET rate
constant[132], and the relation was found to be valid
in the classical limit in this case. Derivation of the
relation is based on classical mechanics and hence
is not adequate to handle quantum effects such as
tunneling and the zero-point effect. Namely, the rela-
tion does not hold rigorously for reactions occurring
below or a little above the reaction barrier. Practical
utility of the scaling relation is as follows. We sup-
pose that a PES constructed at a quantum chemical
level is qualitatively similar, or nearly scalable, to the
real one, even though height of the barrier is some-
what different. Then the scaling theorem suggests that
a decent estimation of dynamics data can be obtained
by carrying out trajectory calculations on the quantum
chemical PES and scaling the results. A question here
is whether a quantum chemical PES would be qualita-
tively similar to the real one. An answer to this ques-
tion is difficult, or impossible, to find because there
is no way to determine a real PES. Approach taken
in this laboratory is to construct quantum chemical
PESs at successively higher levels and observe their
convergence.

5.2. Similarity factors

To test the proposition that dynamics results on
qualitatively similar PESs be scalable, one needs a def-
inition for qualitative similarity of PESs and also for
similarity of dynamics results on these surfaces.

To be rigorous, the similarity of two PESs must
be considered over the entire configuration space. To
simplify the matters, a definition of PES similarity
was proposed which took into account the geomet-
rical variation along the intrinsic reaction coordinate
only [119]. To treat the exit channel problem, the
energy along IRC in each PES was normalized to the
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reverse barrier. The normalized potential energy was
calledε. Many points along the exit channel IRC were
sampled at equal energy interval, withεi denoting the
normalized energy at the pointi. Normalized differ-
ence between the interatomic distance vectors at the
pointsi andi+ 1 was defined asDi. Then, similarity
of a PES A to the reference PES R was defined as

SA
P =

∑
i εi(D

A
i · DR

i )∑
i εi

. (30)

When PES A is simply scaled to R,SP is 1. Otherwise,
SP becomes smaller than 1.

To test whether trajectory studies on qualitatively
similar PESs would result in similar dynamics data, a
measure of similarity between dynamics data obtained
on A and R surfaces is needed. Dynamics similarity
factor for the exit channel problem was defined as
follows:

SA
D = 1 −

[∑
i

(fA
i − fR

i )2

]1/2

. (31)

Herefi is the normalized energy of theith degree of
freedom, either translational, rotational, or vibrational,
of the products. Here again,SD is 1 when energy par-
titioning data from the A and R surfaces are exactly
scaled. OtherwiseSD becomes smaller than 1. Utility
of theSP factor is as follows. We calculate the poten-
tial energy diagram along IRC at successively higher
ab initio levels. Taking the one obtained at the highest
level as the reference,SP factors for lower levels are
calculated. When these converge to 1 as the levels get
higher, we take the highest level adopted as a good
representation for the real system, construct PES at
this level, and carry out dynamics study. This strategy
is based on the assumption that the energy partitioning
data converge (SD → 1) as the convergence of PES
shape (SP → 1) is achieved at high ab initio level.
This was tested and some results are presented below.

5.3. Example 1: Scaling of the product
mode-specific energy

To investigate the convergence of the product mode-
specific energy, the PESs for the following reaction

were constructed at various quantum chemical lev-
els, including semi-empirical, ab initio, and density
functional theory levels.

CD2OH+ → CDO+ + HD. (32)

A PES obtained at the QCISD level was taken as the
reference and theSP factors for other levels were cal-
culated. The results are shown inTable 2. Three thou-
sand trajectories were run on PES at each level. The
normalized mode-specific energies calculated from
the trajectory results are shown inTable 2also. It is
seen that dynamics data obtained on semi-empirical
surfaces are noticeably different from those on the
reference surface. It is to be noted that these surfaces
do not quite resemble the QCISD surface as evi-
denced by smallSP factors. As the level goes up, the
normalized dynamics data become similar to those on
the reference. The trend becomes more clear inFig. 3
which shows a strong positive correlation between
SP and SD factors. Also important is the fact that
dynamics data obtained at moderate and moderately
high quantum chemical levels are similar, or have

Fig. 3. Correlation between the dynamical (SD, Eq. (31)) and PES
(SP, Eq. (30)) similarity factors for reaction(32). QCISD/6-31G∗∗
level was used as the reference. Semi-empirical (�), HF (�), MP
(�), QCISD (�), and DFT (�) results. (Taken from ref.[119]
with permission from AIP.)
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Table 2
Product mode-specific energies of the reaction(32) normalized to the reverse barrier (in %) calculated using PESs constructed at various
quantum chemical levels, the dynamics similarity factors (SD, Eq. (31)) calculated therefrom, and the PES similarity factors (SP, Eq. (30))

Level Et Er (HD) Ev (HD) Er (CDO+) Ev (CDO+) SD SP

ν1
a ν2

a ν3
a

MNDO 50.9 20.3 7.8 1.4 3.8 14.1 1.3 0.744 0.904
AM1 41.2 14.4 18.2 1.9 7.6 13.9 2.0 0.648 0.823
PM3 56.9 8.5 9.3 2.3 1.5 14.8 4.5 0.830 0.936

3-21G∗∗ 69.3 6.9 5.4 1.2 6.2 10.7 1.3 0.954 0.985
4-31G∗∗ 73.3 4.3 5.1 1.5 3.5 12.5 1.1 0.968 0.991
6-31G∗ 69.8 6.4 6.5 1.3 4.0 12.5 1.4 0.963 0.996
6-31G∗∗b 72.4 5.2 5.0 1.7 3.1 12.7 1.0 0.976 0.999

MP2 73.3 6.5 3.8 1.3 4.1 10.7 0.9 0.978 0.993
MP4 (SDQ) 72.3 7.3 4.1 1.4 3.4 11.4 1.0 0.989 1.000
QCISDc 72.5 7.0 4.9 1.5 2.7 11.3 0.9 1.000 1.000

BLYP 68.6 7.9 6.7 1.5 2.7 10.4 1.7 0.955 0.981
BP86 66.9 10.7 5.4 1.8 2.6 11.4 1.5 0.932 0.997
B3LYP 70.8 8.3 5.0 1.7 2.1 10.9 1.4 0.977 0.986
B3PW91 70.7 10.1 4.4 1.9 1.7 11.4 1.3 0.962 0.999

Taken from ref.[119] with permission from AIP.
a ν1, ν2, andν3 are the symmetric stretching, bending, and anti-symmetric stretching vibrations of CDO+, respectively.
b 6-31G∗∗ basis set was used in the calculations at the post-SCF and DFT levels.
c QCISD results were taken as the reference in the calculation of similarity factors.

converged. This suggests that the energy partitioning
data calculated at the moderately high levels of the-
ory such as QCISD/6-31G∗∗ or MP4 (SDQ)/6-31G∗∗

would be reliable. Survey of the data inTable 2sug-
gests that dynamics results on PESs constructed at
even higher levels would not be significantly differ-
ent from those at the moderately high levels, or the
trajectory results have converged.

Scaling of product energy partitioning was also
tested for the following neutral reaction[130]:

H2CO → H2 + CO. (33)

This reaction was chosen because the experimental
distribution of translational, rotational, and vibrational
energies of products are known[133–136]. The PESs
were constructed with coordinates appropriate for the
product region at the HF, MP2, QCISD, and B3LYP
levels of theory using the 6-31G∗∗ basis set. The re-
verse barriers calculated at these levels are 106.58,
94.16, 93.26, and 79.52 kcal mol−1, respectively, com-
pared to 77.97 kcal mol−1 estimated in the experiment.
These data were used to estimate the scaling factors

(s2) which, in turn, were used to scale the trajectory
results. The scaled kinetic energy release distribution
and the distributions of the product vibrational and
rotational quantum numbers calculated at these levels
are shown inFigs. 4–7. It is to be noted that the scaled

Fig. 4. The scaled translational energy (in kcal mol−1) distributions
obtained on PESs constructed at HF (�), MP2 (�), QCISD (�),
and B3LYP (�) levels for reaction(33). The shaded area is the
range for acceptable fit to experimental data as reported by Moore
and coworkers[133]. (Taken from ref.[130] with permission from
AIP.)
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Fig. 5. The vibrational populations of (a) H2 and (b) CO, which
are the products of reaction(33). Calculations at the level of HF
(�), MP2 (�), QCISD (�), and B3LYP (�) levels, and the
experimental data (�). (Taken from ref.[130] with permission
from AIP.)

mode-specific energies calculated are in excellent, or
nearly quantitative, agreement with the experimental
data. This demonstrates that the difficulty in the trajec-
tory approach arising from inaccurate energetic data
obtained at moderately high quantum chemical lev-
els can be overcome, at least partially, by utilizing the
scaling relation.

5.4. Example 2: Scaling of the rate constant

Scaling relation for the rate constant was numer-
ically checked for the reaction(33) [132]. A global
PES was constructed at the HF/6-31G∗∗ level using
coordinates appropriate in the reactant region. The
classical forward barrier calculated at this level was
104.6 kcal mol−1. This PES was scaled with the scal-
ing factors (s2) of 0.25 and 4 with the corresponding
forward barriers of 26.15 and 418.4 kcal mol−1. A
total of 1050 trajectories were run on each surfaces
(s = 0.5, 1, and 2) with the scaled internal energies of
35.0, 140.0, and 560.0 kcal mol−1, respectively. The

Fig. 6. Rotational populations of product H2 of reaction(33) in
(a) v = 1 and (b)v = 3 vibrational states. HF (�), MP2 (�),
QCISD (�), and B3LYP (�) levels, and the experimental data
(�). (Taken from ref.[130] with permission from AIP.)

rate constants calculated by the semilog plots inFig. 8
were 0.89× 1011, 1.78× 1011, and 3.56× 1011 s−1.
ks=0.5:ks=1:ks=2 ratio of 0.5:1:2 is exactly as expected
from Eq. (29). This confirms the validity of the rate
constant scaling relation,Eq. (29).

The RRKM rate–energy data for the same reaction
were also calculated using the molecular parameters
obtained at the HF/6-31G∗∗ level with the scaling
factors (s2) of 1.0, 1.44, and 4.0,Fig. 9(a). It is to
be noted that the rate constant at a particular in-
ternal energy changes dramatically with the scaling
factor used. These data were converted to the scaled
forms by invoking the scaling relations for the in-
ternal energy (Eq. (26)) and rate constant (Eq. (29)).
The rate–energy data calculated using widely differ-
ent forward barriers, 26.16–418.4 kcal mol−1, nearly
overlap after scaling except at very near the reaction
threshold where the zero-point energy effect in the
RRKM calculation must be especially prominent,
Fig. 9(b). This demonstrates that a good estimate
of RRKM rate constant can be made by calculating
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Fig. 7. Rotational populations of product CO of reaction(33) in
(a) v = 0 and (b)v = 1 vibrational states. HF (�), MP2 (�),
QCISD (�), and B3LYP (�) levels, and the experimental data
(�). (Taken from ref.[130] with permission from AIP.)

with molecular parameters obtained at moderately
high quantum chemical level and scaling the results
with the experimental forward barrier information.
Theoretical RRKM rate–energy data for this reaction
were reported by Miller[137] and also by Troe[138].
The forward barriers used in the calculation were
93.6 and 88.5 kcal mol−1, respectively. With the for-
ward barrier of 104.6 kcal mol−1 at the HF level, the
scaling factors for the PESs used by the above inves-
tigators become 0.895 and 0.846, respectively. The
rate–energy data reported by the above investigators
were scaled accordingly and are compared with the
HF/6-31G∗∗ result in Fig. 10. The excellent agree-
ment among these data clearly demonstrates utility of
the scaling relation for rate constant estimation.

6. Numerically induced chaos

Reaction systems we are interested in are inherently
nonlinear. In such cases, it is well known that even a

Fig. 8. The semilog plots (· · · ) of the fractions (N/N0) of the
unreactive trajectories vs. time for reaction(33). (a) The trajectories
on the interpolated PES constructed at the HF/6-31G∗∗ level. The
same surface was scaled to obtain the other results. Thes factors
used were (b) 0.5, (c) 2, and (d) 1.5. Scaled internal energies were
also used, (a) 140.0, (b) 35.0, (c) 560.0, and (d) 315.0 kcal mol−1.
Lines (—) are the least squres fits toEq. (28). The rate constants
evaluated with the slopes of the lines are indicated. (Taken from
ref. [132] with permission from AIP.)

tiny effect can vary the conditions such that the future
outcome is entirely different from what might have
been expected[139]. In the present case, factors af-
fecting a trajectory can creep in at various stages, for
example, at the time of PES construction, initial state
sampling, etc. Advent of chaos in the time evolution
of a nonlinear system has been a subject of great inter-
est[140–143]. However, not much attention has been
paid to this effect in the field of computational reac-
tion dynamics partly because the usual approach here
is to evaluate dynamics properties as averages of re-
sults from many trajectories. It is certain that the effect
of chaos can not be ignored when one attempts to gain
physical information from a single, or limited number
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Fig. 9. (a) The RRKM rate–energy relations for reaction(33).
The solid curve (—) was calculated with HF/6-31G∗∗ data. The
dots (· · · ) and dash-dots (–·–·–) were obtained using parameters
scaled with thes factor of 1.2 and 2.0, respectively. (b) The
scaled RRKM rate–energy relations for reaction(33) obtained by
transforming the data in (a). The abscissa is the classical internal
energy referred to the reactant energy minimum divided bys2.
The ordinate is the logarithm of the rate constant divided bys.
The solid curve (—), dots (· · · ), and dash-dots (–·–·–) represent
the results fors = 1, 1.2, and 2.0, respectively. (Taken from ref.
[132] with permission from AIP.)

Fig. 10. The scaled RRKM rate–energy relations for reaction(33)
obtained using Miller’s (· · · ) and Troe’s (–·–·–) parameters are
compared with the HF/6-31G∗∗ result (—). The formers were
scaled using the scaling factors (s2) of 0.895 and 0.846, respec-
tively. (Taken from ref.[132] with permission from AIP.)

of, trajectory. The chaos we are interested in here is the
one inherent in computation with digital computers.

In numerically solving equations of motion, two
kinds of numerical errors are involved, truncation and
round-off errors. Truncation error which is caused
by truncation of infinite Taylor series can be kept
small by choosing a proper integrator and by using
a small time step. It is possible to get some idea on
its influence by calculating the energy conservation
error. Round-off error is due to the finite precision
arithmetic used in a computer. Its influence increases
as the total number of integration steps increases and
prevents one from using a very small time step. It is
well known that tiny round-off error can accumulate
rapidly and alter the course of a trajectory signifi-
cantly even when the energy conservation error is
negligible[144,145]. Influence of the numerical chaos
originating from the round-off error may be simply
checked by changing the arithmetic precision adopted
in computation. However, tremendous amount of
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computation time is often needed for such an effort
and the outcome can be indecisive.

An easy way to check the advent of chaos, we
found, is to calculate equivalent trajectories and in-
spect differences in their time evolutions[125]. In the
previous section, it was shown that the rate constants
of reaction(33) obtained from three sets of equivalent
trajectory calculations usings2 = 1, 2−2, and 22 were
exactly scaled as dictated byEq. (29). Namely no ev-
idence for the influence of numerically induced chaos
was seen. When a similar calculation was done with
s = 3/2 (results shown inFig. 8(d)), the rate constant
scaling was found to hold not exactly but only up to
the third significant digit. Then, it was realized that
rigorous rate constant scaling fors2 = 1, 2−2, and 22

was due to binary nature of digital computation.
The method devised to check the advent of numer-

ically induced chaos is as follows. After constructing
a PES, one prepares a simply scaled PES using a
scaling factor (s2) other that 22n (n is an integer). Two
trajectories, one on each PES, are run initiated from
equivalent phase space points. Then, equivalence of
two trajectories are checked at equivalent times by
calculating

Eq = |q1 − qs|
|q1|

or
|p1 − ps/s|

|p1|
. (34)

Hereq1 andp1 are the atomic positions and momenta
at a point on the original trajectory andqs andps are
those on the scaled one.Eq = 0 when equivalence
is strictly maintained. As time elapses and the ef-
fect of round-off error accumulates,Eq increases and
eventually approaches 1 indicating complete breakup
of equivalence. Using double precision arithmetic, it
takes only several picoseconds for complete breakup
of equivalence as will be seen in the following exam-
ple. Use of extended double precision helps, but only
slightly. This is the reason why use of computational
dynamics must be limited to fast processes such as
the rate constant calculation for a reaction occurring
on a picosecond or shorter time scale and calcula-
tion of product energy partitioning. One may attempt
the rate constant calculation for a reaction occurring
on a longer time scale and obtain results indicating

statistical nature of the reaction. One can not be sure
in this case, however, whether the statistical behavior
observed is due to the inherent vibrational ergodicity
(rapid intramolecular vibrational redistribution (IVR))
of the system or is caused by scrambling arising from
the numerically induced chaos. Computational dy-
namics has been widely used to study IVR occurring
in polyatomic systems[146–151]. A generally ac-
cepted view on this phenomenon is that IVR is com-
plete within several picoseconds in most of the cases.
Considering that breakup of equivalence caused by
numerical chaos is completed within the same time
scale, a special caution is called for in such studies.

6.1. Example: Intramolecular dynamics ofHOD

To study the breakup of equivalence caused by nu-
merical chaos, intramolecular dynamics of HOD was
calculated using the following potential energy[125]:

V = 1
2h11z

2
1 + 1

2h22z
2
2 + 1

2h33θ
2 + h12z1z2

+h13z1θ + h23z2θ. (35)

Here z1 and z2 are the reciprocal displacements of
the OH and OD bond lengths, respectively,θ is the
bond angle displacement, andhij ’s are the compo-
nents of the hessian matrix.hij ’s calculated at the

Fig. 11. Time evolution for the bending mode energy of HOD
initiated at the bending phase angle of 229.15◦ and the bending
energy of 60 kcal mol−1 is shown as the solid line (—). The model
potential,Eq. (35), is used. The dashed line (– – –) is the result
from the scaled calculation (s = 3). (Taken from ref.[125] with
permission from Elsevier.)
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MP2/6-31G∗∗ level were used. Even though only
quadratic terms are present in the above formula, vi-
brational modes are still coupled through the kinetic
term in the Hamiltonian.

Fig. 11 shows the time evolutions of the bending
mode energy of HOD in the original (s = 1) and scaled
(s = 3) trajectories calculated at the double precision.
The bending energy does not relax but undergoes rapid
oscillation through bend–stretch recurrence[152]. The

Fig. 12. Time evolution of the bending energy of HOD averaged
over 1000 equivalent trajectories. The original trajectory (s = 1)
was initiated at the phase angle of 229.15◦ and bending energy of
60 kcal mol−1. Equivalent trajectories were calculated using 999
different scaling factors (s) other than 2n. The mode energies in
scaled calculations were rescaled. (a) Single, (b) double, and (c)
extended double precision calculations. (Taken from ref.[125]
with permission from Elsevier.)

time evolutions in the original and scaled trajectories
are essentially the same up to∼5 ps, or equivalence is
maintained. After this period, it looks as if dephasing
occurs, which is actually caused by numerical chaos.
The influence of the numerical chaos can be better seen
by calculating many scaled trajectories and averaging
the results at equivalent times. The averages over 1000
such trajectories calculated at the single (32-bit), dou-
ble (64-bit), and extended double (128-bit) precisions
are shown inFig. 12. Even though the bending en-
ergy in each trajectory oscillates indefinitely (>1 ns),
the trajectory averages dampen quickly as if IVR
occurred. Improving the arithmetic precision extends
the time interval which is effectively free from the
influence of numerical chaos. But the improvement
achieved is simply proportional to the number of dig-
its used in the calculation while the computation time
increases more rapidly. A simpler way to inspect the
advent of numerical chaos is to calculate two initially
equivalent trajectories (for example,s = 1 and 3)
and evaluateEq along the trajectories. The results are
shown inFig. 13. The trend here is the same as above.
Namely, breakup of equivalence caused by numerical
chaos occurs on a low picosecond time scale and
improving the arithmetic precision is not an effective

Fig. 13. Time evolution of−log(|q1 − qs|/|q1|) along trajectories
of HOD at single (�), double (�), and extended double (�)
precisions calculated with 0.01 fs time step. Solid circles (�)
represent the extended double precision results calculated with
0.1 fs time step. Initial phase angle was 229.15◦ and initial bending
energy was 60 kcal mol−1. The scaled trajectory was run with
s = 3. (Taken from ref.[125] with permission from Elsevier.)
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way to slow it down. We attempted various other
schemes to lengthen the useful time interval but failed.

Not added in proof

After the completion of the manuscript, it was found
that some of the important contributions to the devel-
opment of the classical trajectory methodology for the
study of ion dissociation dynamics were not pointed
out specifically. Additional references[153–163]are
provided here so that the readers gain further overview
of the field.
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